Identifying early-warning signals of critical transitions with strong noise by dynamical network markers
نویسندگان
چکیده
Identifying early-warning signals of a critical transition for a complex system is difficult, especially when the target system is constantly perturbed by big noise, which makes the traditional methods fail due to the strong fluctuations of the observed data. In this work, we show that the critical transition is not traditional state-transition but probability distribution-transition when the noise is not sufficiently small, which, however, is a ubiquitous case in real systems. We present a model-free computational method to detect the warning signals before such transitions. The key idea behind is a strategy: "making big noise smaller" by a distribution-embedding scheme, which transforms the data from the observed state-variables with big noise to their distribution-variables with small noise, and thus makes the traditional criteria effective because of the significantly reduced fluctuations. Specifically, increasing the dimension of the observed data by moment expansion that changes the system from state-dynamics to probability distribution-dynamics, we derive new data in a higher-dimensional space but with much smaller noise. Then, we develop a criterion based on the dynamical network marker (DNM) to signal the impending critical transition using the transformed higher-dimensional data. We also demonstrate the effectiveness of our method in biological, ecological and financial systems.
منابع مشابه
Detecting tissue-specific early warning signals for complex diseases based on dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis
Identifying early warning signals of critical transitions during disease progression is a key to achieving early diagnosis of complex diseases. By exploiting rich information of high-throughput data, a novel model-free method has been developed to detect early warning signals of diseases. Its theoretical foundation is based on dynamical network biomarker (DNB), which is also called as the drive...
متن کاملDetecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers
Considerable evidence suggests that during the progression of complex diseases, the deteriorations are not necessarily smooth but are abrupt, and may cause a critical transition from one state to another at a tipping point. Here, we develop a model-free method to detect early-warning signals of such critical transitions, even with only a small number of samples. Specifically, we theoretically d...
متن کاملSeveral Indicators of Critical Transitions for Complex Diseases Based on Stochastic Analysis
Many complex diseases (chronic disease onset, development and differentiation, self-assembly, etc.) are reminiscent of phase transitions in a dynamical system: quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. Understanding such nonlinear behaviors is critical to dissect the multiple genetic/environmen...
متن کاملEarly warning signals for critical transitions in a thermoacoustic system
Dynamical systems can undergo critical transitions where the system suddenly shifts from one stable state to another at a critical threshold called the tipping point. The decrease in recovery rate to equilibrium (critical slowing down) as the system approaches the tipping point can be used to identify the proximity to a critical transition. Several measures have been adopted to provide early in...
متن کاملNoise-Induced Precursors of State Transitions in the Stochastic Wilson–Cowan Model
The Wilson-Cowan neural field equations describe the dynamical behavior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using a pair of coupled integro-differential equations. Here we use bifurcation theory and small-noise linear stochastics to study the range of a phase transitions-sudden qualitative changes in the state of a dynamical system emerging from a bifurca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015